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Optically active b-lactams were synthesized via photochemical

intramolecular c-hydrogen abstraction reaction of thioimides

involving a highly-controlled chiral-memory effect.

Recently, we reported the enantioselective synthesis of chiral

quaternary carbons from commercially available chiral amines

and amino acids using the chiral-memory effect via the photo-

chemical b-hydrogen abstraction reaction by a thiocarbonyl

group (Scheme 1).1 In the reaction, in spite of the radical

center being generated at the original chiral center, the chir-

ality was retained because the reaction proceeded from the

singlet excited state of the thiocarbonyl group. It is well known

that molecules in the singlet state mostly react more stereo-

selectively than the corresponding triplet state molecules be-

cause the singlet state molecules react faster than molecular

motions such as bond rotation.2 Giese et al. reported a stereo-

specific photochemical route to proline derivatives by a singlet

Norrish–Yang photocyclization reaction via a 1,5-biradical

intermediate generated by d-hydrogen abstraction of glyoxa-

late derivatives.3 The reaction is one of the few remarkable

examples of the photochemical ‘‘chiral-memory effect.’’4,5

Griesbeck et al. reported that the photocyclization involving

g-hydrogen abstraction of phenylglyoxalylamide derivatives

lost the chirality of the starting materials and gave racemic

b-lactams.6 Now we have studied the synthesis of optically

active b-lactams using the chiral memory effect on g-hydrogen
abstraction of thiocarbonyl groups of thioimides.

Thioimides show considerably high photochemical reactiv-

ity toward hydrogen abstraction by the thiocarbonyl sulfur

from the b-, g- and d-positions, and the reaction provides a

useful synthesis of several types of heterocyclic compounds.7

In photochemical g-hydrogen abstraction of acyclic mono-

thioimides, b-lactams were obtained via a 1,4-diradical inter-

mediate.8 Then, the asymmetric photochemical reaction of

monothioimides derived from optically active 2-phenylpropa-

noic acid was studied (Scheme 2). If the lifetime and the

flexibility of the diradical intermediate are low, the chiral-

memory effect will be observed, and an enantioselective

photochemical reaction should occur.

Optically active monothioimides (S)-1a,b were prepared by

acylation of the corresponding thioaroylanilides. The optical

activity of (S)-2-phenylpropanoic acid was not lost through

chlorination by SOCl2 followed by the reaction with thio-

aroylanilides in the presence of triethylamine. The 96% ee of

1a,b was used for the asymmetric photoreaction.

Both monothioimides have absorptions derived from pp*
excitation in the UV region and from np* excitation of the

thiocarbonyl group in the visible region (430–570 nm).

When a 20 mM toluene solution of (S)-1a was irradiated

with Pyrex-filtered light from a 500-W high-pressure mercury

lamp under argon atmosphere, the product analysis indicated

the formation of two stereoisomeric 4-mercapto-b-lactams 2a

accompanied by a small amount of benzthioanilide 3a. The

enantiomeric excesses of two stereoisomeric isomers of 2a were

analyzed by HPLC using a CHIRALCEL AD-H column

(Daicel Industry), which showed that the ee values were 96

and 95%, for (3R,4S)-2a and (3R,4R)-2a, respectively (Table 1,

entry 1). The absolute configuration of (3R,4S)-2a was deter-

mined as the S-acetyl derivative (3R,4S)-4-acetylthio-3-

methyl-1,3,4-triphenylazetidin-2-one 4a by the X-ray anoma-

lous dispersion method.9 The structures of other b-lactams

were determined on the basis of spectral data, and the

Scheme 1 Asymmetric synthesis of quaternary carbons via chiral
memory effect on b-hydrogen abstraction by the thiocarbonyl group.

Scheme 2 Photochemical b-lactam synthesis by g-hydrogen abstrac-
tion by a thiocarbonyl group.
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stereochemistry was analysed by the comparison of their

spectral data with (3R,4S)-2a and (3R,4R)-2a.

Irradiation of other monothioimides (S)-1b in toluene solu-

tion also gave the corresponding mercapto-b-lactams 2b in 59

and 10% chemical yields; furthermore, the optical activity was

also retained as shown by the ee values of 93% for (3R,4S)-2b

and 85% for (3R,4R)-2b, respectively (entry 2) although

decreased a little relative to entry 1. The reaction using

t-BuOH as a solvent gave the corresponding 2b in higher ees

(96 and 94%), respectively (entry 3). The back hydrogen

transfer from the biradical intermediate gave rise to lowering

the ee value by reversal reaction in a Type II process. In this

case, it seems that the use of t-BuOH slowed down the back

hydrogen transfer process from the biradical intermediate by

forming a hydrogen bond with the mercapto group.10

The mechanism for the formation of b-lactams 2 and

benzthioanilide 3 involves a 1,4-diradical intermediate generated

by g-hydrogen abstraction by the thiocarbonyl sulfur atom

(Scheme 3). Sensitization of the reaction by a triplet sensitizer

such as Michler’s ketone or thioxanthone was quite inefficient.

These results clearly indicate that the hydrogen abstraction

reaction proceeds from the singlet excited state of thioimides.

Short-lived diradical cyclizes rather faster than the racemization

process owing to the bond rotation around the radical site.

In conclusion, optically active b-lactams were effectively

synthesized via photochemical intramolecular g-hydrogen ab-

straction of thioimides, where the highly-controlled chiral-

memory effect was observed. This reaction provides not only

the first example of a chiral-memory effect for the photoche-

mical g-hydrogen abstraction reaction of thiocarbonyl or

carbonyl compounds, but also a useful synthetic methodology

of optically active b-lactams.
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Table 1 Photochemical reaction of 1a,b under various conditions

Entry Imide 1 Yieldc (%) of (3R,4S) 2 Ee (%) of (3R,4S)-2 Yieldc (%) of (3R,4R)-2 Ee (%) of (3R,4R)-2 Yieldd (%) of 3

1a (S)-1a 50 96 11 95 21
2a (S)-1b 59 93 10 85 23
3b (S)-1b 56 96 13 94 15

a A 20 mM toluene solution was irradiated with a 500-W high-pressure mercury lamp through a Pyrex filter. b A 50 : 50 mixed solvent of t-BuOH

and toluene was used for irradiation. c Chemical yields were determined by 1H NMR. d Isolated yields.

Scheme 3 Photochemical g-hydrogen abstraction of monothioimides 1.
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